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Aperiodic stochastic resonance~ASR! is a phenomenon in which the response of a nonlinear system to a
subthreshold information-bearing signal is optimized by the presence of noise. We have previously character-
ized this effect by the use of cross-correlation-based measures. Here we apply a measure~transinformation!
that directly quantifies the rate of information transfer from stimulus to response and show that the presence of
noise optimizes the information-transfer rate. By considering a nonlinear system~the FitzHugh-Nagumo
model! that captures the functional dynamics of neuronal firing, we demonstrate that sensory neurons
could, in principle, harness ASR to optimize the detection and transmission of weak stimuli.
@S1063-651X~96!51309-7#

PACS number~s!: 87.10.1e, 87.22.2q, 05.40.1j

Stochastic resonance~SR! is a phenomenon in which the
response of a nonlinear system to a weak periodic input sig-
nal is optimized by a particular level of additive noise@1#.
Theories of SR have been developed for multistable@2,3#,
monostable @4#, and excitable @5# systems, as well as
threshold-crossing detectors@6#. Many of these studies were
restricted to cases with periodic input signals, which is some-
what limiting from a practical standpoint as many systems of
interest are driven by nonperiodic inputs. Previous work has
considered also the possibility of aperiodic input signals con-
sisting of stationary stochastic processes for SR studies in a
bistable system@3,7#. Recently, we have shown that the no-
tion of SR can be readily extended to cases with aperiodic
~arbitrary! inputs @8,9#. We coined the termaperiodic sto-
chastic resonance~ASR! to describe this phenomenon.

It is implicitly assumed that both SR@10,11# and ASR
@8,9# indicate some maximum in the rate ofinformation
transfer between system input and output. This issue has
been addressed explicitly only recently@12–14#; previous
results inferred a maximum in information transfer from a
maximum in coherence or cross-correlation measures be-
tween the input and output. In this paper, we establish that
the cross-correlation measures employed for ASR@8,9# are
indeed accompanied by a maximum in the information-
transfer rate for the model at hand.

We employ the FitzHugh-Nagumo~FHN! construct@15#
as the model system for investigating ASR. This system has
been used in a number of physiologically motivated SR in-
vestigations@5,8–10,16# because it provides a compact rep-
resentation of the firing dynamics of sensory neurons driven
by an external signal. In particular, for sufficiently strong
~i.e., suprathreshold! input signals, the FHN model exhibits
excursions~firings! from a fixed point, followed by a deter-
ministic return to that point within a short period of time
~i.e., the dead time!, similar in character to action potential
activity observed on nerve fibers. A subthreshold input sig-
nal, by contrast, cannot cause firing; however, addition of a
noise component allows the possibility of occasional firings

arising from random noise-induced excursions across the
threshold. This firing behavior of the FHN model provides a
prototypical environment for numerical SR experiments,
since it forms a type of nonlinear response, a fundamental
component of an SR system.

In this paper, we consider the FHN model under the in-
fluence of a subthreshold aperiodic signals(t) to which
Gaussian white noisej(t) has been added:

e v̇52v~v22 1
4 !2w1AT2B1s~ t !1j~ t !, ~1!

ẇ5v2w,

wherev(t) is a fast~voltage! variable,w(t) is a slow ~re-
covery! variable,AT is the threshold voltage which must be
exceeded for firings to occur,B is the signal-to-threshold
distance,s(t) is an arbitrary input signal, andj(t) is a white,
zero-mean Gaussian noise term with an autocorrelation func-
tion ^j(t)j(s)&52Dd(t2s). The angular bracketŝ & de-
note ensemble averaging over the distribution ofj.

The exact form ofs(t) is unimportant in demonstrating
ASR, as long as its variations occur on a time scale slower
than the slowest characteristic time of the nonlinear system
under study. In the numerical simulations reported in this
paper,s(t) was formed by convolving Gaussian correlated
noise~with a correlation time 1/a5 20 s!, with a 10-s unit-
area Hanning-window filter. The state variablesv(t) and
w(t) exhibit dynamics on different time scales, since the
parametere is chosen such thate!1 ~see Fig. 1 caption!,
while both vary on time scales faster than that ofs(t). With-
out loss of generality,s(t) is taken to be zero mean, since
otherwise its mean can be subsumed intoB, the signal-to-
threshold distance. Conventionally,v(t) is taken as model-
ing the membrane voltage of a neuron, and an event~spike!
occurs whenv(t) makes a positive crossing through some
chosen threshold. Typical event rates for the parameters used
here are 0.1–2.0 events per second. A time-varying firing
rater (t), defined as the number of spikes per second, can be
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formed by convolving the output spike train with a time-
averaging window@17#. The phenomenon of ASR, as re-
ported in Ref.@8#, describes the way in which the cross-
correlation between this firing rater (t) and the original input
signals(t) reaches a peak for some level of the input noise
j(t).

We begin with a review of the cross correlation measures
used in Ref.@8#. The first measure considered was the power
normC0 @18#, defined as

C05s~ t !r ~ t !, ~2!

wheres(t) is the zero-mean aperiodic input signal,r (t) is
the firing rate at the output of the FHN model, and the over-
bar denotes a time average. This definition is suitable under
the assumption that the firing rate contains information about
s(t), rather thanṡ(t) or some more complex measure of
s(t) ~as considered in Ref.@19#!. However, for the FHN
model, wheres(t) directly affects the probability of crossing

the threshold, it seems appropriate to proceed on the assump-
tion thats(t) is the relevant transmitted quantity. The second
cross-correlation measure considered was the normalized
power normC1 given by

C15
C0

@s2~ t !#1/2@$r ~ t !2r ~ t !%2#1/2
. ~3!

The numerical results@20# for the FHN model with a sub-
threshold aperiodic signals(t) are shown in Fig. 1. The
ensemble-averaged values~and standard errors! of C0 and
C1 are shown as a function of the input noise intensityD. A
single realization ofs(t) was used in calculating these
curves. The solid curves are theoretical results presented in
Ref. @8#, and show reasonable agreement with the numerical
simulations, especially for smaller noise intensities, as ex-
pected. BothC0 andC1 exhibit clear maxima for specific
values ofD, although they provide slightly different esti-
mates of the optimal noise intensity.

While these cross-correlation measures are intuitively sat-
isfying in describing the system’s behavior, information
theory provides a means to quantify directly the information-
transfer rate~transinformation! of the system from input to
output. First, we evaluate an upper bound for the source in-
formation rate, by invoking a relation proposed by Shannon
@21#:

Wlog2S Pe

N1
D<I<Wlog2S Ps

N1
D , ~4!

where W is the bandwidth of the source signals(t),
Pe522H/2pe is a quantity defined as the entropy power,
with H the source entropy~see below!, N1 is the maximum
tolerable mean-square error in a received version ofs(t), I is
source information rate in bits per second, andPs is the
stimulus power. The source entropyH is defined as

H5 lim
n→`

2
1

nE E . . . E p~s1 ,s2 , . . . ,sn!

3 log2p~s1 ,s2 , . . . ,sn!ds1ds2 . . .dsn , ~5!

wheresi represent samples ofs(t) and p(s1 ,s2 , . . . ,sn) is
their joint probability density overn samples. Assuming a
bandwidthW50.8 Hz ~i.e., 99.5% of the energy in the
stimulus lies below this frequency! and a mean-square error
N150.05Ps , an upper limit of approximately 3.5 bits/s can
be inferred from Eq.~4!. If the transinformation exceeds this
figure, then the signal is being transmitted with a mean-
square error smaller than 5%; conversely, a lower transinfor-
mation means a higher mean-square error.

Different approaches for estimating information transfer
in neuronal systems exist@22#. We concentrate on an ap-
proach used recently by other investigators@12,19#. In this
method, neural coding is viewed as a process in which reli-
able estimatessest(t) of the input stimulus are made by fil-
tering the neural spike train with filters chosen subject to an
optimization criterion, such as minimizingusest(t)2s(t)u2. In
general, these filters can be either linear or nonlinear.~Cal-
culating a rate function from a neural spike train is a special
case of linear filtering.! Since, in many cases, nonlinear fil-

FIG. 1. Ensemble-averaged values~triangles! and standard er-
rors ~bars! of ~a! the power normC0 and~b! the normalized power
norm C1 vs 2D, whereD is the intensity of the input Gaussian
white noise, for the FHN model with a subthreshold aperiodic input
signal s(t). The parameter values used in Eq.~1! were e50.005,
AT525/(12A3), andB50.07. The input signals(t) was Gaussian
noise with a correlation time of 20 s followed by a 10-s Hanning
filter. The same input signals(t), with variancess

251.531025 and
total time length5 300 s was used for all results presented. The
theoretical predictions forC0 andC1 from Ref. @8# are shown as
solid curves.C0 and C1 were computed for each trial and then
averaged over 200 trials using different seeds to generate the Gauss-
ian white noise. These curves differ slightly from those shown in
Ref. @8# because a dead time of 0.25 s is now assumed between
firings of the FHN model.

54 R2229INFORMATION MEASURES QUANTIFYING APERIODIC . . .



tering provides little extra benefit over linear filtering@19#,
we chooser (t) as a possible estimate ofs(t) and use this
assumption in calculating the transinformation theoretically
and analytically. ~The interevent interval between neural
spikes, or some other measure, could also serve as the
information-carrying symbol@13,23#.!

To do this, both stimulus and response rate are divided
into contiguous segmentssi(t) andr i(t), which are assumed
to be related by

r̂ i~v!5ĝ~v!@ ŝi~v!1n̂i~v!#, ~6!

where r̂ i(v) and ŝi(v) are representations of the rate and
signal segments in the Fourier domain,ĝ(v) models the ef-
fect of any filtering in the neural coding and rate-formation
process, andn̂i(v) is an effective noise level referred to the
input level. Given enough segments of stimulus and re-
sponse, a reasonable estimate ofĝ(v) can be obtained, al-
lowing calculation ofni(t), the noise waveform, for each
segment. Simulations have shown that for the present case
the resultant effective input noise is approximately Gaussian,
so that Shannon’s formula for the transinformationT across
a memoryless channel applies@19,21#:

T5
1

2pE0
`

log2@11S~v!/N~v!#dv, ~7!

whereS(v) andN(v) are the power spectral densities of
s(t) and n(t), respectively. Figure 2 shows the estimated
transinformation~in bits/s! as a function of the input noise
intensityD for the same set of simulations used in Fig. 1.
This measure exhibits a resonant peak atD'231026. The
estimated transinformations lie well below the available
source bit rate, as expected for the driving signals~i.e., sub-
threshold broadband signals plus noise! used in this study.

We can analytically estimate the transinformation from
Eq. ~7! using results from Ref.@8#. The firing rater (t) ob-
tained by filtering the spike train with a time-averaging win-
dow is the convolution of the instantaneous firing rate with
the windowing function. In Ref.@8#, we adopted the ansatz

that the instantaneous firing rate was equal to the ensemble-
averaged Kramers’s escape rate plus some noise termp(t).
This ansatz leads to an overall expression forr (t):

r ~ t !5E f ~ t2u!@^r ~u!&1p~u!#du, ~8!

where the angular brackets denote ensemble averaging over
j, f (t) is the time-averaging window, and

^r ~ t !&5K0exp@2Q1Ds~ t !#, ~9!

with K052A3Bpe, Q5A3B3e/D, andD53A3B2e/D @8#.
@Note that Eq.~8! is an amended version of Eq.~15! in @8#.#
Expanding Eq. ~9! to linear order in s(t) yields
^r (t)&.r 0@11Ds(t)#, where r 05K0exp(2Q). Generally,
we consider the zero-mean rater (t), so we take instead
^r (t)&.Dr 0s(t). Substituting this rate into Eq.~8! and Fou-
rier transforming yieldsr̂ (v). f̂ (v)@K0Dr 0ŝ(v)1 p̂(v)#,
from which we can identifyĝ(v).K0Dr 0 f̂ (v).

The power spectral densityN(v) is the Fourier transform
of the autocorrelation functionGn(t), which is obtained by
ensemble and segment averaging ofni(t)5pi(t)/(K0Dr 0),
i.e., Gn(t)5^n(t)n(t2t)&, where the bar denotes segment
average andn(t)5^n(t)&50. We assume thatGn(t) will be
of the formGn(t).sn

2z1(t), for some integrable function
z1(t). The variancesn

2 will comprise two terms. One is from
the variance of the noise termp(t). Assuming that the output
spike train is approximately Poisson in nature,^p(t)&50,
and the variance of the instantaneous firing rate will be pro-
portional to the rate itself @24#, giving
^p(t)2&5K1^r (t)&.K1r 0, whereK1 is a constant approxi-
mately equal to unity. The second term is a subtle effect due
to the averaging over segments, and arises from the nonlin-
ear variation of the rate with the input signals(t), and is
given by (^r (t)&2^r (t)&)2.r 0

2D2ss
2exp(D2ss

2)/K0
2 where

ss
25s2(t) @8,25#. Combining these two terms yields

N~v!.
K1r 01r 0

2D2ss
2exp~D2ss

2!/K0
2

~K0Dr 0!
2 ẑ1~v!, ~10!

which can be substituted into Eq.~7!. Assume that the input
signal is drawn from an ensemble of filtered correlated noise
source and has the spectrumS(v)5ss

2ẑ2(v), whereẑ2(v)
is an integrable function. ForS(v)/N(v),,1 we can ex-
pand the logarithm in Eq.~7! to obtain

T.
1

2p ln2 F ss
2K0

4D2r 0
K0
2K11r 0D

2ss
2exp~D2ss

2!G E0` ẑ2~v!

ẑ1~v!
dv.

~11!

The integral will contribute a constant. In this form, the
Shannon transinformation is directly proportional to the
square ofC1 @8,25#. The transinformation as a function of
D, calculated in this manner, is shown in Fig. 2 as a solid
curve. This estimate predicts both the presence of a maxi-
mum in the transinformation, and the noise intensity value at
which that maximum occurs. The discrepancy between the
theoretical and realized values of transinformation, can be
attributed to several factors, the main one likely being the

FIG. 2. Ensemble-averaged values~triangles! and standard er-
rors of the transinformationT ~in bits per second! calculated by
applying Shannon’s formula to the same 200 trials as used in Fig. 1.
The theoretical prediction forT from Eq. ~11! as a function of the
input noise intensityD is shown as the solid curve, with parameters
as in Fig. 1, andK151.
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non-Poisson behavior of the spike train. A superior model is
the dead-time modified Poisson process@26#. This deviation
will become more pronounced with increasingD, as is ap-
parent in Fig. 2. Errors may also arise from the breakdown of
the Kramers’s rate for large values ofD and the use of a
delta function to approximate the correlation ofp(t), which
was an assumption used in obtaining the ensemble-averaged
rate. Nevertheless, our estimate carries the key elements of
the behavior of the transinformation.

This analysis confirms that the peak in the cross-
correlation measuresC0 andC1 for a particular level of input
noise is matched by a peak in the transinformation, comple-
menting the results contained in Ref.@13#. In particular, the
shape of the normalized power normC1 curve matches the
shape of the transinformation curve quite well. This result
was not unexpected, given thatC1 incorporates stimulus-
response coherence effects. Our transinformation findings
are also consistent with experimental results obtained from
the cricket cercal sensory system@12#, for which a form of

ASR was observed, albeit with a quasi-white-noise stimulus
rather than a slowly varying stimulus.

This work clearly shows that for cases with subthreshold
aperiodic input stimuli, the addition of noise can optimize
the information-transfer rate, as well as second-order coher-
ence measures, in the FHN model. From a neurophysiologi-
cal standpoint, this finding suggests that sensory neurons
could, in principle, harness ASR to optimize the detection
and transmission of weak stimuli. Further experiments on
sensory neurons are needed to test this hypothesis. Our re-
sults also raise other related, interesting lines of inquiry. For
instance, it is intriguing to consider whether other factors,
such as nonwhite input noise and/or optimal neural decoding
strategies@19#, provide an enhanced ASR effect. Such work
could provide further insight into the functioning of neuro-
physiological sensory systems.
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